Threshold tuning curves of chinchilla auditory nerve fibers. II. Dependence on spontaneous activity and relation to cochlear nonlinearity.
نویسندگان
چکیده
Spontaneous activity and frequency threshold tuning curves were studied in thousands of auditory nerve fibers in chinchilla. The frequency distribution of spontaneous activity rates is strongly bimodal for auditory nerve fibers with characteristic frequency <3 kHz but only mildly bimodal for the entire sample. Spontaneous activity rates and thresholds at the characteristic frequency are inversely related. Auditory-nerve fibers with low spontaneous rate have tuning curves with lower tip-to-tail ratios and more sharply tuned tips than the tuning curves of fibers with high spontaneous rates. It is shown here that this dependence of tuning on spontaneous rates is consistent with a previously unnoticed nonmonotonic dependence on iso-velocity criterion of the frequency tuning of basilar membrane vibrations.
منابع مشابه
Threshold tuning curves of chinchilla auditory-nerve fibers. I. Dependence on characteristic frequency and relation to the magnitudes of cochlear vibrations.
Frequency-threshold tuning curves were recorded in thousands of auditory-nerve fibers (ANFs) in chinchilla. Synthetic tuning curves with 21 characteristic frequencies (187 Hz to 19.04 kHz, spaced every 1/3 octave) were constructed by averaging individual tuning curves within 2/3-octave frequency bands. Tuning curves undergo a gradual transition in symmetry at characteristic frequencies (CFs) of...
متن کاملSuppression Measured from Chinchilla Auditory-Nerve-Fiber Responses Following Noise-Induced Hearing Loss: Adaptive-Tracking and Systems-Identification Approaches
The compressive nonlinearity of cochlear signal transduction, reflecting outer-hair-cell function, manifests as suppressive spectral interactions; e.g., two-tone suppression. Moreover, for broadband sounds, there are multiple interactions between frequency components. These frequency-dependent nonlinearities are important for neural coding of complex sounds, such as speech. Acoustic-trauma-indu...
متن کاملTraveling waves on the organ of corti of the chinchilla cochlea: spatial trajectories of inner hair cell depolarization inferred from responses of auditory-nerve fibers.
Spatial magnitude and phase profiles for inner hair cell (IHC) depolarization throughout the chinchilla cochlea were inferred from responses of auditory-nerve fibers (ANFs) to threshold- and moderate-level tones and tone complexes. Firing-rate profiles for frequencies ≤2 kHz are bimodal, with the major peak at the characteristic place and a secondary peak at 3-5 mm from the extreme base. Respon...
متن کاملMechanical bases of frequency tuning and neural excitation at the base of the cochlea: comparison of basilar-membrane vibrations and auditory-nerve-fiber responses in chinchilla.
We review the mechanical origin of auditory-nerve excitation, focusing on comparisons of the magnitudes and phases of basilar-membrane (BM) vibrations and auditory-nerve fiber responses to tones at a basal site of the chinchilla cochlea with characteristic frequency approximately 9 kHz located 3.5 mm from the oval window. At this location, characteristic frequency thresholds of fibers with high...
متن کاملDorsal cochlear nucleus response properties following acoustic trauma: response maps and spontaneous activity.
Recordings from single neurons in the dorsal cochlear nucleus (DCN) of unanesthetized (decerebrate) cats were done to characterize the effects of acoustic trauma. Trauma was produced by a 250 Hz band of noise centered at 10 kHz, presented at 105-120 dB SPL for 4h. After a one-month recovery period, neurons were recorded in the DCN. The threshold shift, determined from compound action-potential ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 100 5 شماره
صفحات -
تاریخ انتشار 2008